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Abstract

During the past two decades, our understanding of
laminar-turbulent transition flow physics has advanced sig-

nificantly owing to, in a large part, the NASA program

support such as the National Aerospace Plane (NASP),

High-speed Civil Transport (HSCT), and Advanced Sub-
sonic Technology (AST). Experimental, theoretical, as well

as computational efforts on various issues such as receptiv-

ity and linear and nonlinear evolution of instability waves

take part in broadening our knowledge base for this intri-

cate flow phenomenon. Despite all these advances, tran-

sition prediction remains a nontrivial task for engineers
due to the lack of a widely available, robust, and efficient

prediction tool. The design and development of the LAS-
TRAC code is aimed at providing one such engineering

tool that is easy to use and yet capable of dealing with a

broad range of transition related issues. LASTRAC was
written from scratch based on the state-of-the-art numerical

methods for stability analysis and modem software tech-

nologies. At low fidelity, it allows users to perform linear

stability analysis and N-factor transition correlation for a

broad range of flow regimes and configurations by using

either the linear stability theory (LST) or linear parabolized

stability equations (LPSE) method. At high fidelity, users

may use nonlinear PSE to track finite-amplitude distur-
bances until the skin friction rise. Coupled with the built-in

receptivity model that is currently under development, the
nonlinear PSE method offers a synergistic approach to pre-

dict transition onset for a given disturbance environment

based on first principles. This paper describes the govern-

ing equations, numerical methods, code development, and
case studies for the current release of LASTRAC. Practi-

cal applications of LASTRAC are demonstrated for linear

stability calculations, N-factor transition correlation, non-
linear breakdown simulations, and controls of stationary

crossflow instability in supersonic swept wing boundary

layers.
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Introduction

In the late 80's till the early 90's, laminar-turbulent
transition research was one of the outstanding issues for

the. National Aerospace Plane (NASP), High Speed Re-

search (HSR), and Advanced Subsonic Technology (AST)

programs. After a dormant period, there has been re-

newed interest in supersonic laminar flow aircraft in recent

years due to the DARPA Quiet Supersonic Platform (QSP)

project. The main objective of the QSP project is to eval-

uate the feasibility of a low-boom laminar flow supersonic

aircraft. 1 The ongoing NASA Langley Supersonic Vehi-

cle Technology (SVT) program is also aimed at developing

technologies required for designing such supersonic vehi-

cles. Computational tool development as well as a series of

w ind-tunnel and flight experiments are planned.

Laminar flow control has been investigated extensively

over the past decades. Experimental, theoretical, as well
as computational efforts on various issues such as receptiv-

ity, linear and nonlinear evolution of instability waves take

part in broadening our knowledge base of this intricate flow

phenomenon. For low speed flows, various stages of the
transition process are now fairly well understood. Theory
and numerical simulations using either parabolized stabil-

ity equations (PSE) or direct numerical simulations (DNS)

accurately describe disturbance generation and evolution

until the transitional stage. Secondary instability in two-

dimensional and swept wing boundary layers observed in

low-speed experiments may also be calculated accurately
using nonlinear PSE and the eigenvalue approach. 2"3 Saric

e' al. 4 discovered that stationary crossflow instability can

be controlled by introducing distributed roughness near the

leading edge to alter the mean state and subsequently sup-

press or delay the growth of the most unstable disturbances.
It has been shown that this control phenomenon may be cai-

ctalated and parametrically studied by nonlinear PSE (see

Malik et al. 3 and Chang-S).

For supersonic to hypersonic boundary layers, the break-
down mechanism is not fully understood largely due to the

lack of experimental measurements. For two-dimensional

boundary layers, it has been shown computationaily that
the secondary instability mechanism observed in low speed

cases may still be present. 2 But other mechanisms, such

as oblique-mode breakdown (Chang & Malikr), may be

more relevant because of the large growth of the oblique

disturbances in low supersonic boundary layers. At hy-
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personic speed, large amplitude second-mode disturbances
have been observed experimentally 7"8 but the breakdown

mechanism is unclear, mainly because the wave orienta-

tion is largely unknown. The recent experiment of a flared
cone in a conventional Mach 6 tunnel by Horvath et al. 9

indicates that transition may or may not be caused by
second-mode disturbances because of a small N-factor at

the transition onset. We need more detailed experimen-

tal measurements to clarify this issue. Receptivity of hy-

personic boundary layers to acoustic disturbance has been
studied by Federov I° and Zhongfl I The role of the entropy

layer on hypersonic boundary layers is investigated both

theoretically and numerically by Fedorov & TuminJ 2 For

supersonic swept wing boundary layers, Saric is currently

extending his distributed roughness control for supersonic
flowsJ 3

Despite all the advances in transition research, the tra-

ditional way of transition correlation and prediction using
the _ l_ method remains one of the mainstream tools used in

the design phase due to its simplicity and availability. The

N-factor method provides a simple way to correlate transi-
tion locations and in the meantime predict transition onset

using a prescribed N-value. For a higher fidelity transi-
tion prediction based on first principles, one can start from

the receptivity model and compute the disturbance initial

amplitudes according to the given disturbance environment

such as a roughness or free-stream disturbance distribution.

Receptivity calculations may be based on a simple lin-

ear theory or a more advanced linear Navier-Stokes (LNS)
method. 14.15The evolution of the internalized disturbances

with known amplitudes can then be calculated using non-

linear PSE all the way until the skin friction rise. Alterna-

tively, a secondary instability calculation may be performed

for a steady, highly nonlinear boundary layer with the pres-
ence of stationary crossflow vortices. 3 To further refine the

transition region or to carry the perturbed field into a fully

turbulent stage, DNS or large eddy simulation (LES) may
be used.

The integrated transition prediction approach described

above encompasses several mature computational means to

form a package of tools for high-fidelity predictions beyond
the conventional _N method. Our current research effort

is geared toward this integrated approach. In addition to
the tool development, at issue is the disturbance environ-

ment. A complete description of the environment remains

very difficult except for a forced transition where manu-

ally excited roughness or free-stream waves outweigh the
natural ones and thus may be quantified accurately in the

computations. As a result, statistical means must be intro-
duced to account for the natural environment. Some efforts

have been made along this direction. 16 A case study for su-

personic swept wing using the integrated approach is also
available.17

One of the main goals of the ongoing NASA Langley

projects for transition flow physics and prediction is to de-
vise a set of tools to enable traditional as well as integrated

transition prediction. The Langley Stability and Transi-

tion Analysis Code (LASTRAC) was developed to meet
two main objectives: to provide an easy-to-use engineering

tool for routine use and to incorporate state-of-the-art com-

putational and theoretical findings for integrated transition

predictions. For the former objective, LASTRAC can per-

form linear calculations and transition correlation using the
N-factor method based on either LST or a more advanced

linear PSE method. The user interface of LASTRAC code

was designed to allow users to identify unstable parameter

space in terms of disturbance frequency and wave numbers

with minimum effort. Transition prediction or correlation

thus can be made with the identified parameter space. In
addition to the traditional LST-based N-factor calculations,

LASTRAC allows users to perform linear PSE N-factor

calculations, which in some cases give a more compact N-

factor range and better correlation.

To achieve the second objective, LASTRAC provides

transition simulation capability based on an absolute am-

plitude. The receptivity module computes the initial am-

plitudes near the neutral stability location. Nonlinear PSE
then simulates disturbance evolution until skin friction rise.

For further refinement near the transition region, a sub-grid

scale model based nonlinear PSE, or large eddy simulation

(LES) and direct numerical simulation (DNS) may be used.

These modules are all currently under development. We
will discuss mainly the nonlinear PSE method in this pa-

per.
In the current LASTRAC release, LST and linear and

nonlinear PSE options are implemented for 2-D, axisym-
metric, and infinite swept wing boundary layers. In addi-

tion, 2-D mixing layer, axisymmetric jet and vortex flows
are also handled by the current release. Extension to gen-

eral three-dimensional(3-D) boundary layers is currently

under development. This paper is a status report of the

LASTRAC development. We discuss governing equations,

numerical solutions, code development, and case studies of

LASTRAC for practical examples in this paper.

Governing Equations

The problem of interest is a compressible flow over a 2-

D or axisymmetric body with a coordinate system depicted

in Fig.l where x is the streamwise, !j the wall-normal,

and : the spanwise direction (or the azimuthal direction
for axisymmetric cases). For the case of infinite swept

wing boundary layers, the coordinate system used is shown

in Fig.2 where _. is the normal-chord direction and : is
parallel to the leading edge. A nonorthogonal coordinate

system can also be used for infinite swept wing boundary

layers and will be used for future LASTRAC releases. A

body-fitted coordinate is adopted because we are interested

in a region adjacent to the wall. For 2-D or axisymmet-

ric configurations, both streamwise curvature along _' and

transverse curvature along = may be included in the compu-

tation; only streamwise curvature is allowed for an infinite

swept wing configuration. In the orthogonal body-fitted

coordinate system, elements of length are hid,r, dy, and

1_3d:, in the a.-, y-, and :-direction, respectively. The

2
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element length can be written as

dl = v/(hjd.,') 2 + d.!/-' + (h:3d=)'-'

The metric h f is associated with the streamwise curvature
h"and is defined as

h_ = 1 + 6"._.

The metric h3 is unity for nonaxisymmetric bodies; for ax-

isymmetric configurations, it is defined as

h:t = r_, + ._/ro.,,'(0)

where r_ is the local radius and 0 is local half-angle along

the axisymmetric surface.

Me,o

Shock

×=0_

Fig. 1 Coordinate system for a 2-D or axisymmetric bound-
ary layer

The evolution of disturbances is governed by the com-

pressible Navier-Stokes equations

Op

.,9C
_'[77 + f v)Q= -

+

0T
P("'[_-V + (f V)T] = v"

+

where V is the velocity vector, p the density, p the pres-

sure, T the temperature, ( 'r the specific heat, k the thermal

conductivity, and p and A the first and second coefficient of

viscosity, respectively. The viscous dissipation function is
defined as

,7-[t,(vF + vC_)](l)

0t

(f v)p+ ¢

x,_, x = 0 Leading edge

/ s,o ,
1-_'__/"l___._// Att aohment

Stre mlin

Normal j. / /
chord _ //

diroction //

Fig.2 Coordinate system for an infinite swept wing boundary
la_'er

The perfect gas relation,

1' = F )?T, (4)

is used as the equation of state.

Equation I is in a nondimensional form, i.e., all lengths

art'. scaled by a reference length scale t, velocity by ,,, den-

sity by p,, pressure by p, ,_, temperature by 7_, viscosity

by p_, and time by (/,,. For stability calculations, these

normalization quantities are taken to be the boundary-layer

edge values. The length scale ( is the similarity boundary-

layer length scale defined by

t : _/,., (s)

and the corresponding Reynolds number is defined by

R = ,, _'/v',. (6)

The solution to the Navier-Stokes equations consists of

two parts, the mean laminar flow solution and the distur-
b;race fluctuation, i.e.,

u : u+ u.v : b+ u': _i'+ w'

P = 1'+ I/,p = /_+ ff.T = T + T'

p= u+t/,A=A+A',k:k+k'.

(7)

4, = _(v. _)'-' + _[vff + vet] _-. (2)

The second viscosity is related to the first one by the Stokes

parameter _, defined as

2
A = _(s- l)p. (3)

Substituting Eq.7 into Eq.l and subtracting the governing

equations for the steady-state basic flow, we obtain the gov-

erning equations for the disturbances as

F O0 A Oo B Oo (' Oo
-b7 + _ + _+_W+ Do:

3
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I X).,. 0'-'o X).v 0'-'o _ 0:-'o
t/', ( h_ i)a"-' + hi O.r().q + X'_O!/'-'

A',.- (-o i_: c)-o I_,, d-o
+

h:_ O.rOz + h:_ O.qO: + _--)Oz .2

(8)

where o is the disturbance vector defined as

0 = (p', u', e', w', 7") g. (9)

The coefficient matrices, [', A, /4, (,, i), V;,_, V_u, etc.
are the Jacobians of the flux vectors, and R, = u, (./u_ is

the Reynolds number used to normalize the equations. The

reference length scale (0 depends on the flow configura-

tion. For a boundary-layer flow, the boundary-layer length
scale (defined in Eq.5) computed at the initial location of

the stability calculations is used. For a jet or shear layer,

the jet diameter or shear layer thickness may be used.
The Jacobian matrices can be further decomposed into

two parts. The first part contains only mean quantities and

the second part contains perturbation quantities. For exam-

ple,

A = A z + A"

where A l = ..'A_(/3, b. t,, 0_,T .... ) and .4" =

.4"(f. gl.... t",t/ .... ).

For a 2-D or infinite swept boundary layer, we assume

the disturbance field is periodic in both temporal and span-
wise directions. The disturbance vector 0 can then be

expressed as the following discrete Fourier series:

M N

rn =-- ;'_1 n ------ ,_,_

where _ and ;3 are the fundamental temporal and span-

wise wave number of interest, respectively. M and N are
the number of Fourier modes included in the calculation

in time and space. The wave number _,' is related to the

physical frequency f by

"2rr_f,, = . (ll)
li e

Another nondimensional frequency often used in stability

calculations is defined by

F - 27rv_ f. (12)

The spanwise wave number is defined by

!_ = 2_r/A: (13)

where A: is the spanwise wavelength normalized by the

length scale t_0. The fundamental mode (_, 3) determines

the size of the computational domain( 1/f in time and A:

in the spanwise direction) and M and _\" represent the nu-

merical resolution (2M + 1 and 2?< + 1 discretized points

in time and the spanwise direction) in the simulation. The

mode shape of a mode (,_, n) is represented by the com-

plex vector X,,,,,.

Equation 8 is the governing equation for the disturbance

evolution. Direct solution of Eq.8 is referred to as the di-

rect numerical simulation (DNS) method. DNS requires a

significant amount of computational time even for a simple

linear case. Hence, .a more efficient approximate solution

to Eq.8 is more desirable. When the disturbance amplitude

is very small relative to the mean quantities, each Fourier

mode evolves independently. Nonlinear interaction among

disturbance modes is negligible. The linearized version of

Eq.8 can be written as

lq i)O .i t Oo O0 ('_ i)O
7(

__1( _J,. 0"-'o A"t e/-'O _.l a'-'o_"'q + (14)
R_) h_ Ox'-' + hi OxO,u _lu?)y'_,

ha Oa'O: + ha OvOz + "'h_-)Oz'-'

For a single disturbance mode (_', 3), 0 can be expressed
as

0 -=- X(J',y)( i(2 .... t). (15)

Substitute the above equation into Eq. 14, we obtain

:t'

i3( q ;4-_._

+( D_ - i_Iq + _ + _)X = (16)h .qR 0

Eq.16 is the linearized Navier-Stokes (LNS) equation,
which is a set of constant coefficient PDE's. Solution of the

LNS still requires a significant amount of computational

time. To further reduce it, approximations to Eq. 16 must
be made.

In the PSE approach, as suggested by Herbert _s and

Chang et al., 2 we decompose the mode shape _ (x, .v) into

two parts; the wave part described by a complex wave num-

ber n and the shapefunction part f' to track the nonparallel

effect, i.e.,

X(X,!l) = _,(x.q)e f]o_(_)d_ (17)

in which _, = (p. u, r. w, T). Here, the integral form

is used for the wave part to allow o variation in x and

to record the history effect of a. The shape function _,
varies both in x and y. Hence, nonparallel effect is re-

tained through the variation of streamwise wave number

and shape function. Substituting Eq. 17 into Eq. 16, we have

(18)

4
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where matrices A. it, and 1) are defined by

A
.( "2i,_1"/, i3I "/. ". • ,rs

hi h_ Rt, h:_Ril

13 = /3 ¢ i_l[r_ i31]: (19)
h r R_ h:_It_j

io A I i3( '______ d_ 2 ....
D = D r-i.:F ¢+ _+ I.i (i-d-xa' - '_ )_(_-Rc,

a _31[,(= 3"-'I "::
+--+--

h lh:_ If(l h_t?ll "

The above PDE differs from the LNS equation (Fx].16) only

in the terms associated with the wave part a. In fact, a wave

part may also be introduced in the LNS solver to increase

the numerical accuracy. 15 The harmonic LNS solution pro-

cedure may be used to solve Eq.18. However, to improve

computational efficiency, a marching procedure is more de-

sirable as long as Eq.18 is parabolic in .r. To this end, we

neglect the viscous derivatives in x and Eq. 18 is reduced to

A 0t' B 0t' + D_'- lily 0_t '' (20)
8.r + 0¢1 Ho O,q'-'"

Chang et al. 2 pointed out that Eq.20 is only "nearly

parabolic" due to the streamwise pressure gradient term

(Op/O.v) inherited from the original Navier-Stokes equa-

tion 1. Numerical instability similar to that observed in
the parabolized Navier-Stokes (PNS) equations 19will oc-

cur if one attempts to solve Eq.20 by using a small enough
marching step size. They further suggested that Vigneron's

approximation 19may be used to suppress the numerical in-

stability. Li and Malik 2° use Fourier analysis to prove the

existence of numerical instability and quantify the numeri-
cal instability bound.

If we retain all nonlinear terms, the governing equations
become

A ..... Or',.,, 0_',,, lily _32t,..... F,,,.--+B.., .--7---+D.._ _,,,, , . -
Ox cnl Ro Oy- A,,,,_

(21)

where matrices A ...... B ...... and D ..... are defined by

.4_ • . .t in3l J.'210 rnn I .r.," .

h_ h_Rf, hsRo

h l Ro h:3Ro

• A!
D,.. = If -- _11_I _1 + tOnnl +

h 1 h s

m. _ -, ._..,. + _ + ., ..-(id'_ '_..... ) h'_R_ldx hl h3Rcl h_H j

ind( 'l

and .4 ..... = ff, a ..... d4. The left-hand side of Eq.21 con-
tains only linear coefficient matrices. All nonlinear terms

are included in the forcing function b_, .... which is the
Fourier component of the total forcing, F", defined as

(22)

F" = - F" i)° A" i)o B" i)° ('" i)o 1)" o
Ol h I Ox i).q h:_ i)z

1 l[,:_,._/-'o I[,!i,j d-'O .,, _/-'o

+ _( It_i)x_ + h| i-)a'i).q + _t"qi).q'

Ii,:': ,020 1_: c)-o l ."=F-'o
+ h_h:_O.r¢)= + h:3 _._): + _--0: 2} (23)

where the disturbance vector o is defined in physical space

(see Eq.9). Nonlinear forcing for each Fourier mode is de-

fined by the following Fourier transform:

M ,X'

i"1 .q_
m=-M .=-N

(24)

The forcing term F,,,_ for a given Fourier mode (n_. n) can

be evaluated by collecting all nonlinear terms contributing

to it. For instance, the (0. I) mode interacting quadrati-

cally with the (1,0) mode would contribute to the ( 1.1 )

mode. In LASTRAC, nonlinear forcing terms are evaluated

by computing F" in physical space and then transforming

F" back into the wave number space to obtain/;; .....

The governing linear and nonlinear PSE are solved by
a fourth-order central difference in the wall-normal direc-

tion and a first- or second-order one-sided difference in

the marching direction. By invoking the locally parallel

assumption, the linear PSE equations may be reduced to

the LST eigenvalue problem. LASTRAC is capable of
handling LST and linear or nonlinear PSE solutions for

a user-supplied mean flow. Details of the discretization
scheme and boundary conditions may be found in Ref. 2_

The PSE marching solution requires an initial condition,
which is discussed in the next section.

Initialization of PSE Marching

The PSE formulation requires an initial condition to start

the streamwise marching procedure. A simple way to ini-

tiate marching is to use the eigenfunction obtained from

the quasi-parallel LST solution. However, because of the

neglected nonparallel terms, the marching PSE solution
obtained this way would have a "transient" region where

the PSE solution attempts to slowly adjust the inconsis-

tent parallel eigenfunctions. This transient effect, more

noticeable for supersonic boundary layers, is a result of the

difference in governing equations between LST and PSE.

To alleviate the transient effect, one can use the multiple-

scale method. 22'23 The computed nonparallel eigenvalue

and eigenfunction may then be used to initiate the PSE

marching procedure.

LASTRAC offers an alternative nonparallel eigen-

solution (NES) procedure based on the discretized parab-

olized governing equations. The governing equation is

transformed to a general coordinate system by using

,t = ((_, u)

5
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_I-- 4(*. !/).

Numerical calculation is then performed in the (E, q) plane.

Using first-order finite difference in (, the governing linear

PSE at two consecutive solution locations, i and i ÷ I, may
be written as

' Oq'-'
- • %.

Di+l t"i+l ÷ -ii+l (_"i+1 -- _'i) ÷ Di+I _(25)
ff

- /)2t,i+ 1

= 1)_,_.i+1
?)it'-'

For this equation, we assume that the second derivative in

c is negligible and Oc/O_ is the same for both point i and

i + 1. This assumption is equivalent to taking forward dif-

ference for point i and backward difference for point i ÷ 1.

The streamwise wave number oi and ai+_ is related by

do

ai+l = ai + _--x-xAx (26)

in which Ax is the streamwise distance between points i
and/+ 1.

If we define the combined shapefunction vector qJ as

t',i+ 1

then Eq.25 may be rewritten as

Bd_ d'-'qJ
Oq_ + _,/ = l d,i--T (27)

where matrices D, B, and I-" are

-J,+_ [)i+1 - Ai+i

B=(/)_ 0)
0 Bi+ 1

(28)

At the boundaries, homogeneous boundary conditions (e.g.

no slip at wall and Dirichlet or nonreflecting conditions at

free stream) may be applied for both i and i+ 1 stations. Eq.

27 is a set of homogeneous ordinary differential equations

(ODE). After discretization in q, Eq. 27 can be cast into

the following nonparallel eigenvalue problem :

L,,v(_P) = 0 (29)

where L,, v = L,,v(,,, a, do/dx, ;_). For a given distur-

bance (w, 3), two eigenvalues a and dc_/dx need to be
found. Unlike the LST eigenvalue problem, the NES has

one more unknown: da/dx. Since the variation of a is

generally small, our first approximation is that da/dx = O.

Thus the eigenvalue problem is similar to the LST case, ex-

cept that the L, w operator now contains solutions at two

consecutive streamwise stations and requires more time

to solve (for both local and global eigenvalue searches).

In fact, obtaining the global spectrum with both , and

d(_/d.r as unknowns is nontrivial. In LASTRAC, we as-

sume d_/dx = 0 for the solution of the global eigenvalue
spectrum.

For the local nonparallel eigenvalue search, as men-

tioned above, we may assume _i = _,+_. The solution

procedure is then similar to the LST case. Alternatively,

we may use a local Newton's iteration to solve for _i and

o,+l simultaneously. To this end, we need two target con-

ditions to be iterated upon. If we use u-velocity at the wall,

then the wall boundary condition ui(0) = ui+:(O) = 0

is replaced by pi(O) = Pi+l (0) = I. This implies that

we will normalize the eigenfunctions such that the pressure

eigenfunction is unity at the wall. The relaxed u-velocity

condition at the wall becomes the target of the Newton's

iterations. In this case, we further assume that the pressure

shapefunction at the wall does not vary from station i to

i + 1. For most cases, the wall pressure variation dp/dx is

small and the above approximation is valid. If I i = u i(O)
and t._,= tt,+: (0), using first-order expansion, we have

0 = t 1 ÷ (_)AOi__ + __Oai+-----_)A°i+l (30)

Of., Ot

0 = t.,_+ (_)Aoioai + (_)Aai+_

where Aai O:1 '+1 n and /kOi+ 1 n+l n
= . -- 0 i = Oi+ 1 -- ai+ 1

denote the change of eigenvalues from iteration n to itera-

tion n + 1. Solution of Eq. 30 provides two eigenvalues:

_*i and Oi+l. The eigenvalue iteration is repeated until

,--_(_i and /koi+ 1 are both smaller than a prescribed toler-

ance. We have also used the wall temperature instead of the

u-velocity as the target condition for Newton's iterations;

numerical experiments indicate that both targets worked

well. For hypersonic boundary layers, relaxing wall tem-

perature tends to be more robust than wall velocity.
The above non-parallel eigenvalue formulation has sev-

eral distinct characteristics. First, for every eigensolu-
tion, we obtain eigenfunctions at two consecutive loca-
tions. Therefore, streamwise derivatives and thus the ef-

fective nonparallel growth rates accounting for this stream-

wise variation may be evaluated. Second, local eigenvalue

search using only one alpha (dc_/dx = 0) is more robust

because the global eigenvalue solver is a good approxi-

mation to the local solver. However, due to the neglected

da/d.v, this approximation produces a small but noticeable

transient effect (smaller than using the LST solutions) if we

use the obtained eigenmode to initiate the PSE marching

procedure. Again, this transient effect is more pronounced

in supersonic than in low-speed boundary layers for 2-D
flows. For crossflow instability, the variation of o near

the leading edge is usually large and the one-alpha proce-

dure yields a noticeable transient effect even at low speed.

6
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Fig. 3 Linear PSE solution obtained by using three different
initial eigenfunctions, compared with the solution initiated far
upstream to assess the transient effect

Furthermore, even though this transient effect is noticeable

in the disturbance growth rate, it is much less noticeable

for the disturbance amplitude which represents the inte-

grated effect of the growth rate. Figure 3 compares linear

PSE solutions obtained by the one-alpha, two-alpha, and

quasi-parallel LST eigenfunctions. The solution initiated

far upstream is also plotted as a baseline solution. Clearly,

the two-alpha eigenfunction produces the least transient ef-
fect.

On the other hand, the two-alpha iteration procedure is

less robust because it requires convergence of two eigen-

values and only first-order Newton's method is employed.

Deriving a second-order method is possible but would re-

quire introducing more target conditions. The lack of ro-
bustness also stems from inconsistency between global and

local eigenvalue solvers (noted that in the global solver,

we assume do/da" = 0). The initial guess of do/dz is

important for the two-alpha procedure. We have found

that for 2-D boundary layers, using the guess from the

global solver and imposing dc_/dx = 0 generally leads to

a converged solution. However, for crossflow instability

near the leading edge of a swept wing, providing a good

guess of do/dx is crucial to convergence of the eigenvalue

search. LASTRAC uses several built-in d¢_/da, guesses for

the two-alpha eigenvalue search. However, in some cases,

users need to provide a good guess in order to get a con-

verged eigenvalue. It was also found that the eigensolution

obtained with the two-alpha procedure produces minimal
transient effects when used to initiate the PSE marching.

As discussed in the previous section, the determination

of c_ is in fact nonunique within the nonparallel frame-
work. The above nonparallel eigenvalue formulation typ-

ically generates more discrete eigenmodes than its quasi-

parallel LST counterpart. Therefore, selecting eigenmodes

of interest from the global eigenvalue spectrum becomes
more difficult. Users may need to provide certain addi-

tional criteria to filter out spurious modes. Interestingly,

one quasi-parallel eigenmode would split into two modes in

the corresponding nonparallel global spectrum mainly be-

cause we are solving two consecutive eigensolutions simul-

taneously and we assume that _i = Oi+l. We found that

with the two-alpha local eigenvalue search, two split modes

converge to the same mode. Mathematically, the nonpar-

allel eigenvalue formulation introduces more degrees of

freedom in the system and thus allows more discrete eigen-

modes (other than the continuous spectrum). The mode

closely associated with the unstable mode given by the par-

allel LST still appears as an eigenmode in most cases. Near

the leading edge of the boundary layer, instability wave

formation and evolution is governed by the receptivity pro-

cess; therefore the nonparallel eigenmode may or may not

be relevant from the theoretical standpoint. LASTRAC se-

lefts the most unstable mode that gives the largest growth

rate at the location of interest to initiate the marching pro-

cedure. Numerical experiments indicate that the eigenvalue

and eigenfunction generated by the NES (both one- and
two-alpha approaches) produce a smaller transient effect

than those from the quasi-parallel LST solution.

Code Development

The LASTRAC code was developed from scratch. Sev-

eral guiding principles were set forth in the initial stage of

LASTRAC development. They are:

• Object-oriented (00) design and implementation

• Generic programming using templates

• Optimization to avoid abstraction penalties and ensure
efficiency

• Muitithread and message passing interface (MPI)

based parallelization

• Source code control and some configuration manage-
ment

The first two items limit the choice of programming lan-

guage to C++ because it is the only mature language that

supports both object-oriented and generic programming.

"[he OO paradigm has been recognized by the software

_orid as a mainstream approach for software development.

An OO software system may take longer to develop but it

will be much easier to maintain and extend as the project

goes along. The concepts of data abstraction, inheritance,

and polymorphism are the themes of an object-oriented

language. Separation of interface and implementation prin-

ciple makes software modules more independent of one
another.

The common concept for modern software development
is to divide the software into a class of similar but not iden-

tical objects with a common interface. The clients of these

objects only need to know about the interface - not the

7
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implementation details. In this way, new objects may be

derived and added to the system without needing to change

the common interface or any existing object client's code.

Code reuse is thus achieved via reciting common interfaces

for various class objects but not through cut-and-paste of

existing codes.

The OO design procedure typically employs a formal

requirement analysis along with use case studies. The Uni-
fied Modeling Language (UML) 2_ is a widely used tool for

OO analysis and design. Due to the lack of resources, we

did not pursue the UML route for analysis and design. In-
stead, the structure of LASTRAC was laid out based on

the numerical formulation and then different design pat-

terns were applied when appropriate. The design patterns

used in LASTRAC came mostly from Gamma et al. 25 with

some modifications to cope with numerical efficiency. A

design pattern is a set of objects and interfaces that occur

over and over again in a software system and hence is also a

solution to a software problem in a context. Many patterns

proposed by Gamma et at. are used in LASTRAC. For ex-

ample, the Singleton pattern is used for input and control

parameters, a Factory Method is used to generate objects

on the fly, the Observer pattern is used to let the metric
class, coordinate transformation class, and Jacobian matri-

ces class update their contents when the solution marches
to the next station. The Template Method and Command

patterns are used to implement a multithread class that al-
lows a nonstatic class member function to be called within

a C-style thread routine.

Generic programming z6 is a new paradigm that allows

a programmer to introduce a parameterized class mem-
ber or member function in a function or class definition.

The introduced parameter is called a template. A routine

designed this way allows unrelated classes or algorithms

to be plugged in as a template parameter as long as the

plugged-in classes fulfill the compilation requirement. For

example, one can design a numerical integration class that

allows various approximation rules be specified as a tem-

plate parameter. The C++ programming language includes
a powerful library called standard template library (STL)

based on the generic programming concept. LASTRAC
uses templates extensively in the class design. STL con-

tainers and algorithms are used to ensure efficiency and

flexibility.

Discussing the details of the LASTRAC code design and

structure is beyond the scope of this paper. Here, we only
describe important elements of the code structure. Users

of LASTRAC need to prepare two files: one contains the

mean flow; the other has the input parameters instructing

which computation (LST, linear or nonlinear PSE, etc.)

needs to be performed. The input parameter file is read

by LASTRAC through a parser. The parser takes an in-

put format similar to the namelist format in Fortran but

allows C++ style comments. LASTRAC performs a "san-

ity check" for the input parameter file and flags errors if any

user mistake is found. The mean flow reader was designed

to be a hierarchy of classes that can be extended for per-

fect gas/reacting flow, 2-D/3-D through inheritance of the
abstract class.

The core part of the code uses the observer pattern (see

Gamma et al. 2s) where two subjects, LocalSubject and

MarchingSubject, perform a local eigenvalue solution and

a marching PSE solution, respectively. The observers are
the coordinate transformation, metric and derivatives, and

Jacobian classes. These classes update their states when the

LocalSubject and MarchingSubject finish their calculations
and move on to the next location. The nonlinear march-

ing subject communicates with LocalSubject and March-

ingSubject to obtain a local eigenvalue for initiating the

marching and to solve for each individual mode during the

nonlinear iteration. It has several logistic classes, such as

a Fourier container class, to perform fast Fourier transform

and to handle Fourier-mode related operations.

The finite difference operation and boundary condition

treatment is handled by using a template class and the

generic programming paradigm. These generic classes
would work for different orders of differentiation and vari-

able types such as real or complex. The left hand side

operator of the PSE and eigenvalue solver were cast in an

operator form to facilitate future maintenance.

To achieve computational efficiency in the LASTRAC

code design, we tried to avoid using many fine-grained

objects. The use of templates in generic programming al-
lows substitution of template parameters at compile time;

consequently the code can be optimized for run-time per-

formance. In LASTRAC, the template meta-programming
technique is used to optimize the matrix multiplication pro-
cedure and the block matrix solvers. Extensive use of

generic programming and template utilities makes LAS-
TRAC as efficient as an earlier code written in Fortran 77.

Parallelization for the nonlinear PSE option in LAS-

TRAC is implemented by using the multithread technique

in conjunction with the more traditional MPI approach.

Posix thread is used in LASTRAC to guarantee portabil-

ity. Multithread and MPI options are only implemented

for nonlinear PSE calculations. Linear options, including

LST and linear PSE, can only be run as single-thread ap-

plications. Since linear calculations are mode independent,
users can launch many LASTRAC runs concurrently on a

multiprocessor or clustered environment.

For nonlinear PSE calculations, each Fourier mode is

solved by a thread or a process under MPI. However, the

nonlinear forcing terms have to be computed collectively.

Parallelization of nonlinear forcing is only done through

computing terms in physical space simultaneously. Each

MPI process may spawn multiple threads. For a multi-
processor node in a cluster, this combined thread and MPI

approach makes LASTRAC run more efficiently.

Source code control and configuration management is

performed through the public domain software CVS. Unit

testing was accomplished for major modules during the ini-

tial development stage. Due to lack of resources, we do not

follow unit and integration testing procedures rigorously.

A semi-automated integration testing procedure is also ira-

8
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plemented.

LASTRAC code has been ported to all major Unix plat-
forms. In the release, we include executables for Linux

Intei, SUN Solaris, and SG1. We are planning to port the

code for Linux Alpha and Windows in the near future.

Code Validation and Test Cases

The LASTRAC code was validated by comparing its re-

suits with those obtained in the literature and by other pub-
licly available codes. The first case used for validation was

the quasi-parallel LST results published by Malik. 27 The

test cases range from low-speed (incompressible) to hyper-
sonic conditions. Linear and nonlinear PSE results were

compared with those given in Chang et al. 2"28"'-9For swept

wing boundary layers, the Arizona State University test
configuration 3° was used for validation, and results were

compared with Malik et al. 3 For all these validation cases,

the results compared very well with existing solutions. To
demonstrate the use of LASTRAC, we discuss several test

cases in details below.
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Fig. 4 Maximized N-factor vs. Reynolds number for f from

2 kHz to 45 kHz for a Mach 2 flat plate boundary layer

Mach 2 Flat Plate

The first case is a Mach 2 flow over a flat plate. LAS-

TRAC reads the mean flow and prints out a summary as
follows:

A
E
E

33

?8

_4

22

20

_6

_4

_2

10

8

6

4

2

1000 2000 3000 4000 5000 6000 7000 8000
Re

Fig. 5 Maximized spanwisewavelength vs. Reynolds number

for f from 2 kHz to 45 kHz for a Mach 2 fiat plate boundary

layer

B.L. Length Scale(m) : 3.0E-09 - 2.4E-04

U inf Velocity (m/s) : 590.065 590.065

T_inf Temperature (K) : 216.667 216.667

% disturbance reference frequency in Hz %

ranging from 153150 to 88310.4 for i/d = 2

or from 25524.9 to 14718.4 for 1/d = 12

In addition to mean flow characteristic, a disturbance fre-

quency range for unstable waves is also suggested. Based

on this frequency range, an input file containing the fol-

lowing may be used to find maximized growth rates with

respect to the spanwise wavenumber 3 :

/'

/' Mach 2 flat plate

!

hum_no rma 1_/3 t s = Z 01

milow_filename = "../meanflow/mflow.m2fp"

m_rching_method_2d = along re

init re = 500, final re = 7900,

snep re = I00,

/* Mean Flow Parameters Reading in *\ solution_type = local_eig_solution

Title : Mach 2 Flat Plate lod max = 25

GasModel : Perfect gas model

Reference Mach Number : 1.99986 freq_unit

Prandtl Number : 0.7 beta unit

No. of Stations : 401

X Coordinate Range(m) : 0.000 - 1.951 freq = 2e3, 4e3,

Re Range : 0.i00 - 8000.00020e3, 25e3, 30e3,

= in_hertz_freq

= wave_angle_beta

6e3, 8e3, 10e3, 12e3,

35e3, 40e3, 45e3,

15e3,

9
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beta = 13"60,

qp_approx = true

Figure 4 shows the resulting N-factor versus Reynolds

number for various disturbance frequencies. The corre-

sponding spanwise wavelength in millimeters is shown in

Fig. 5. It indicates that the unstable spanwise wavelength

is around 4 to 20 mm. The N-factor shown in Fig. 4 may be

used for transition correlation or prediction directly. How-
ever, it has been found that N-factor correlation based on

individual modes rather than maximized modes represents

the physics better and thus gives better transition correla-

tion with respect to experimental data. Given the unstable

frequency and spanwise wavelength range, further calcula-

tions such as LST or linear PSE may be done for individual

modes. Or if the initial disturbance amplitudes are known

from receptivity calculations or experimental data, nonlin-

ear PSE may be launched for a number of unstable waves
to track transition onset.

0.0_5

0.0003

OOooGo o

o

_IL_J,I,, ,|,,f,l,
1500 2000 2500 3000

R

Fig. 7 Skin friction coefficient vs. Reynolds number for a
Mach 2 fiat plate boundary layer undergoing an oblique-mode
breakdown
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Fig. 6 Evolution ofdisturbancemodal amplitudes for a Mach
2 fiat plate undergoing an oblique-mode breakdown

As shown in Fig. 4, a disturbance with a frequency of 12
kHz reaches an N-factor of 10 first. The associated max-

imized spanwise wavelength is about 8 mm. We initiate
a nonlinear PSE calculation at R = 1500 with a pair of

oblique modes with f = 12 kHZ and A- --- 8 mm (Fourier
mode (1, 1) and (1, -1)). The initial amplitude is 0.1c7_,

for both modes. The resulting streamwise velocity ampli-

tude versus Reynolds number is shown in Fig.6 for various

Fourier modes. Mutual interaction of the oblique pair gives

rise to the excitation and growth of the (0, 2) mode. Non-

linear interaction of this triad then cascades energy into

higher harmonics and eventually causes transition. The
skin friction is plotted in Fig.7. The rapid rise near the
end illustrates that the flow is transitional. More details

concerning this oblique-mode breakdown may be found in

Chang & Malik. 6

This example shows a typical work flow how LASTRAC

may be used for stability calculations and transition predic-

tions. For a given mean flow, the unstable frequency and

spanwise wavelength range may be found with minimum

effort and without too much prior knowledge of the flow.

After identifying this range, N-factor correlations or pre-

dictions using either LST or linear PSE may be performed.

For a given initial amplitude, nonlinear PSE may also be

used to track nonlinear development of the instability wave

all the way until skin friction rise.

Maeh 6 Flared Cone

Another test case is a Mach 6 flared cone for which ex-

perimental measurements have been conducted in the Lan-
gley Mach 6 :Ill-in tunnel. 31 The experimental model is a

5 _' straight cone for the first 10 in. followed by a flared
section. At a free-stream Mach number of 6, the bound-

ary layer edge Mach number inside the shock is about

5.4. The dominant instability mode is hence second mode.
The second-mode wave is most unstable when it is two-

dimensional or axisymmetric. All second-mode calcula-

tions presented here were done for axisymmetric waves.

The asymmetric first-mode waves were computed by using
different azimuthal wave numbers, ,, defined as the num-

ber of waves along the azimuthal direction.

Figure 8 shows quasi-parallel LST N-factors of various

disturbance frequencies (ranging from 20 to 340 kHz) ver-

sus the streamwise distance z for a unit Reynolds number
of 2.89 × 10 '3/ft. This case corresponds to the earlier Mach

6 quiet wind-tunnel measurements with a unit Reynolds
number of 2.81 × 10_ /ft. The N-factor value at the tran-

sition onset is merely 3.8 under the conventional tunnel
conditions, as compared to a value of about 7.8 under the

10
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Fig. 8 Second-mode N-factors of various disturbance fre-

quencies for the Mach 6 flared cone with a unit Reynolds
number of 289 x 10 _/ft at adiabatic waU conditions

Fig. 10 First-mode N-factors of various disturbance frequen-
cies and azimuthal wave numbers for a unit Reynolds number
of 2.8 9 x 10_/ft at an adiabatic wall condition
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Fig. 9 Optimized first mode N-factor vs. Reynolds number

for the Mach 6 flared cone, f -- 60 kHz, also showing corre-
sponding integer azimuthal wave number on the plot

quiet tunnel conditions.

Figure 9 depicts the N-factor and corresponding maxi-
mized integer azimuthal wave number for a typical first-

mode frequency of 60 kHz. The kink on the wave number

curve near ._' = 10 in. is due to the curvature discontinuity

in the presence of the flare. The results show that the first

mode is most unstable for, ranging from 10 to 50. Using
this information, first-mode N-factors are calculated for a

disturbance frequency ranging from 40 to 100 kHz and an
azimuthal wave number from 7_ : 3 to 7+ -- 30 and the

results are shown in Fig. 10. The most amplified azimuthal

wave number was found to be around 20 for most cases.

The first-mode N-value at transition onset measured in the

conventional (non-quiet) tunnel is only about 2 to 3 which

is comparable to the second mode.

Jet and Shear Layer
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Fig. 11 Velocity and temperature profiles for a compressible
shear layer

LASTRAC may also be used for jet and shear layer insta-

bility calculations. A shear layer with hyperbolic tangent

velocity and temperature profiles, as shown in Fig. 11, is

used as a test case. The computed velocity and tempera-

ture eigenfunctions are shown in Fig.12. LASTRAC can

be used to compute axisymmetric jets or vortex flows. The
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Fig. 13 Growth rates vs. disturbance frequency for the Mach
2.5 jet at x = 0.02 m for different azimuthal wave numbers

test case is a Mach 2.5 jet. The computed growth rates

versus disturbance frequencies are show in Fig. 13 for vari-

ous azimuthal wave numbers ranging from 0 (axisymmetric

mode) to 3.

Thermal Control of Supersonic Crossflow Instability

Recently, the concept of supersonic thermal laminar flow

control has been proposed as an alternative to existing tech-

nologies based on either natural laminar flow design or

suction. Thermal control does not suffer from major draw-

backs of shaping or suction and has the potential to offer an

effective control with lower system penalties and fewer re-

strictions on airframe design. This case is intended to study

the effect of cooling on supersonic swept wing boundary

layers.

Viscosity is a strong function of temperature; it fol-

lows that wall cooling directly affects the stability char-

acteristics of viscous-mode instability waves. For gases,

heating destabilizes while cooling stabilizes. Conversely,

heating stabilizes a water boundary layer. Examples

of viscous modes include the incompressible Tollmien-

Schlicting (TS) wave and the first-mode wave in compress-

ible boundary layers which is in fact a mixture of viscous
and inviscid mode. 32 For inviscid modes, the effect of wall

cooling is more intricate. The addition of a new general-

ized inflection point due to wall cooling directly alters the
stability characteristics. Mack 32 performed both inviscid

and viscous stability calculations on first- and second-mode

waves and concluded that in general, cooling stabilizes

first-mode disturbances and it destabilizes higher modes
such as a second-mode disturbance.

For swept wing boundary layers, crossflow instability is

the dominant instability mechanism. This inviscid insta-

bility arises because of the presence of an inflection point

in the crossflow profile in the direction perpendicular to the
free-stream direction. As a result, for incompressible swept

wing boundary layers, wall cooling has little effect on its

growth. On the other hand, wall cooling may still affect su-

personic crossflow instability in a significant way because

of the presence of an additional generalized inflection point

in the mean flow profiles.
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Fig. 14 Generalized inflection point for the streamwise ve-
locity component for an adiabatic and cooled wall, Mach 2
infinite swept wing boundary layer

We use a Mach 2 flow over a 70 ° infinite swept wing

boundary layer as the test example for thermal control.

Before showing the stability results, we will examine the

effect of cooling on the mean flow profiles first. The nec-

essary condition for inviscid instability in compressible

boundary layers is the presence of a generalized inflection
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d / dtz

The generalized inflection quantity _t/'_) for the
above boundary layer with an adiabatic and cooled wall

(T,,:/T_ = 0.75) condition is shown in Fig.14 and 15

for the streamwise and crossflow profiles, respectively. As

can be seen in Fig. 15, cooling simply moves the inflection

point of the crossflow velocity profile toward the wall but

does not remove it. In contrast (Fig. 14), two streamwise

inflection points in the adiabatic wall case disappear as we

apply cooling. It is interesting to note that the inflection

points in the streamwise velocity profile are not present in

the incompressible case.
Our linear stability calculations show that similar to first-

mode waves, cooling stabilizes both stationary and travel-
ing low supersonic crossflow instability. The main differ-

ence is that cooling is much more effective for first-mode

waves that appear in 2-D boundary layers. For a Mach 2

flat plate, T_,/Taa,,, : 0.95 is sufficient to reduce the N-

factor significantly. However, in the present Mach 2 swept

wing, a cooling of 7_:/7"_ ..... 0.75 or lower is neces-

sary to have a significant effect. Nevertheless, cooling still

is an effective means to control supersonic crossflow in-

stability. Figures 16 and 17 show the N-factor versus a'/c

for stationary crossflow instability with an adiabatic and

partially cooled (with 7],/T,,t_, = 0,75 for .r/c < 0.1)

wall, respectively. If we take N : 10 as the transition

location, this partially cooled wall brings transition loca-

tion from ,r/c : 0.52 to x/c = 0.44, a 15_7_reduction.
The above results indicate that for supersonic crossflow

instability, thermal control is a viable alternative to exist-

ing technologies. More parametric studies are necessary to

Fig. 16 N-factor vs. x/c for stationary crossflow for a Mach
2, '0 ° swept wing with an adiabatic wall condition

15

TwtTadw = 0.75 up to x/¢ = .10

14

13

12'

11

10

al
z ri

6

5

4

3

2

1

0

sfat'ormry Cm_itow

Pmrht WmllCot41¢_

X/¢ : 0.52

0.1 0.2 0.3 0.4 0.5 0.6 0.7
X

Fig. 17 N-factor vs. x/c for stationary crossflow for a Mach
2. 70 ° swept wing with T,,/T,.i. = 0.75 for .r/c < 0.1

draw a more concrete conclusion.

Distributed Roughness Control

This test case is concerned with the distributed rough-

ness control proposed by Saric. 33 The incompressible Ari-

zona State University swept wing 3° boundary layer is first

analyzed by using LST. Unstable stationary crossflow dis-

turbances are identified by using the eigenvalue solution

procedure. The unstable modes have a spanwise wave-

length from 3 to 30 mm. Figure 18 shows some of the rep-

resentative modes. In a distributed roughness control, we

manually excite an early growing mode such as the 8-ram

mode in this case using a distributed roughness near the
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Fig. 18 Important stationary crossflow modes for the incom-
pressible Arizona State University swept wing experiment
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Fig. 19 Nonlinear evolution of the 12-mm and 24-mm modes
with and without the presence of the controlled 8-mm mode
for the incompressible ASU swept wing experiment

leading edge. This early growing mode will grow to a large
amplitude near the leading edge and its growth modifies the

mean flow to an extent that the normal growth of the most

amplified mode with a wavelength of 12 mm would be sup-

pressed. In the mean time, the 8-mm mode rapidly enters

the decaying stage downstream because of the nature of the

short wavelength modes. Eventually, all unstable modes
involved die out and laminar flow is maintained before the

end of the chord. Nonlinear PSE was run for two cases.

The uncontrolled case was run with an initial amplitude of
about 0.01cX for the 12-mm mode. For the controlled case,

we introduce an additional 8-mm mode with an initial am-

plitude of about I(/(. As shown in Fig.19, the uncontrolled

case reaches an amplitude of about 15(/( near the end of
simulation. On the other hand, the controlled case has a

final amplitude less than 2(/, for both 8-mm and 12-mm

modes (as well as its harmonic 24-mm mode). Transition

in this configuration is related to secondary instability of

the highly nonlinear stationary crossflow modes. Smaller

amplitude in the controlled case would prevent secondary

instability and thus transition from happening. These cases

were run with 24 Fourier modes (31 = 0, .V = 24).

Mach 2, 70 degree Swept Wing

15_-f 0

14 1 =

1,,ol 1=°°<=
9 Early Growing __

8 L Mode 8mm(3) / /

7t 6 mm_--"-/ /in24_(we1) Mode

l°_/J"_o'_'" 'o'.,.... o'.3'" o'4.... o'._.... o',.... o.,

z

x

Fig. 20 Important stationary erossflow modes for the Mach

2, 70 ° swept wing boundary layer
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Fig. 21 Nonlinear evolution of the 12-mm and 24-ram modes
with and without the presence of the controlled 8-mm mode
for the Mach 2, 70" swept wing boundary layer

To investigate whether a distributed roughness control

would work for supersonic boundary layers, we study the
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Fig. 22 Nonlinear evolution of the 12-ram and 24-ram modes
with and without the presence of the controlled 6-ram mode
for the Mach 2, 70" swept wing boundary, layer

Mach 2, 70 _' swept wing configuration used previously for

thermal control again. Figure 20 shows the N-factor for the

most amplified along with other representative modes. The

most amplified wave is at A: = 1;2mm and both 6-mm and

8-mm waves appear to be a good candidate for the control.

Note that the 24-mm mode also has a large N-factor at the
end. For the uncontrolled calculation, we excite both the

12-mm and 8-ram modes with an initial amplitude of t.e -

6. The fundamental spanwise wavelength is 24 nun and 32

modes (,V = 32) are kept in the Fourier series.

The first control is to utilize the 8-mm mode. We in-

crease the initial amplitude of the 8-mm mode an order

of magnitude larger to 5._ - 5. The results are shown in

Fig. 21. For the uncontrolled case, the 8-mm mode grew

early on but it was overtaken by the 12-mm mode at around
¢/c = 0.'22, the harmonic 24-ram mode also grew to a

quite large amplitude near the end of the calculation. For
the controlled case, the 8-mm mode was dominating early

on then started to decay not too far downstream. As a result,

both 12-mm and 24-mm modes were suppressed. The final

amplitude for the controlled case is at least one and half

orders of magnitude smaller than the uncontrolled case.

For the second control, we introduce the 6-mm mode as

the (0, 4) mode in the nonlinear calculation. The initial am-

plitudes of the 12-mm and 8-mm modes are set to 1._ - 6

and the control mode 6-mm has an amplitude of 5.c - 5.

Figure 22 shows the results. The 6-mm control mode grew

early on and was dominating for z/c < 0.18. It then de-

cayed rapidly. Similar to the 8-nma control case discussed

previously, the growth of 12-mm and 8-mm modes was

suppressed by the presence of the large amplitude 6-mm

mode. However, the rapid growth of the 24ram mode at
the end appears to be unavoidable. This 24-ram mode ex-

cited by nonlinear interaction of the 6-ram and 8-ram ((0, 4)

and (0, 3) modes) as well as 8-mm and 12-mm ((0, 3) and

(0, 2) modes) grew very rapidly from the beginning. Fur-

thermore, for .r/,. > 0:23 where other modes are decaying,

this 24-mm mode begins to dominate due to its large linear
growth rate (see Fig.20). Therefore, the 6-mm control is not

as effective as the 8-mm one as shown in Fig. 21. Depend-
ing on the initial amplitude, in this case, the introduction

of the 6-mm mode may or may not achieve laminar flow

control because of the presence of the very unstable longer

wavelength mode.

This example shows that the selection of the control

mode is crucial to the success of distributed roughness

cm_trol. For the latter supersonic swept wing case, lin-

early, the unstable stationary crossflow modes cover a large
spanwise wave number range, which is a characteristic of

large Reynolds number configurations. As a result, non-
linear interaction of the control mode and the most am-

plified mode may give rise to a longer wavelength mode
that would eventually dominate downstream. When this

happens, using distributed roughness with a single span-

wise wavelength would fail according to our nonlinear PSE

results shown here. However, introducing multiple-scale

distributed roughness may still work. Further parametric

study is necessary to draw a more concrete conclusion.

The results presented here also demonstrate the importance

of parametric study using nonlinear PSE for a nonlinear

control concept such as the distributed roughness control.

LASTRAC provides one such tool for future design stud°
ieso

Incompressible Subharmonic Breakdown

i0 _
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-= 10-"

10 -s
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0.05 0,1 0.15
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Fig. 23 Nonlinear evolution of selected Fourier modes for
subharmonic breakdown to turbulence in a Blasius boundary
layer

The last test case is the well-known incompressible sub-

harmonic breakdown phenomena. The fundamental mode
is a 2-D mode (mode (;2.0)) with a frequency of F =
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Fig. 24 Skin friction coefficient versus Reynolds number for
the subharmonic breakdown in a Blasius boundary layer

1.24 × 10 -4. The subharmonic mode (mode (l, 1)) has

a nondimensional (normalized with the boundary layer
length scale) spanwise wavenumber of about 9 = 0.14.

Initial amplitudes are about 0.5(/_ and 0.005c_ for the fun-

damental and subharmonic modes, respectively. We use

six Fourier modes in both temporal and spanwise direc-

tions (M = 6, N = 6). Figure 23 shows the u velocity

amplitude evolution for the fundamental, subharmonic and

some representative modes. Secondary instability takes

place early on; and nonlinear interaction results in exci-

tation of many harmonics. Near the end of the simulation,

the fundamental mode is forced to grow again (back reac-
tion) as the subharmonic mode saturates. The skin friction

for the perturbed nonlinear PSE solution is plotted against

the Blasius (laminar) solution in Fig. 24. A rapid rise of
skin friction is evident.

Summary

Predicting transition onset remains a daunting task even

with the state-of-the-art computing facilities. At the lowest

fidelity, transition may be predicted by using a prescribed

N-factor and a simple linear stability or parabolized sta-

bility theory. Depending on the accuracy requirement, the

N-value may come from empirical correlations with exist-
ing wind tunnel or flight experiments, or from a commonly

used value such as 10. The major problem of this approach

lies in the N-value itself. According to past experiences,

the transition N-value may vary from as small as 2 or 3

for a noisy facility to as high as 15 or 20 in flight. Thus,

for a new configuration, determining the N value is itself a

difficult task. Despite this uncertainty, N-factor correlation

remains the most viable method for transition prediction
due to its simplicity. LASTRAC provide both LST- and

PSE-based N-factor correlation capability.

For a given mean flow, a possible unstable frequency

range is suggested by LASTRAC and by using the max-

imizing N-factor option, users may obtain an unstable

parameter range of disturbance frequency and spanwise

wavelength with minimum effort and little prior knowledge
of the mean flow under consideration. Further linear calcu-

lations using either quasi-parallel LST or nonparallel PSE

may be launched to obtain an envelop of N-factors formed

by a broad range of unstable modes. The N-factor envelope

then can be used for transition correlations or predictions.

LASTRAC also provides the capability to compute dis-
turbance evolution based on an absolute amplitude. Non-

linear PSE calculations may be performed for a number

of unstable modes with a finite amplitude. We show sev-
eral test cases in which the boundary layer is perturbed

with a given amplitude and transition is captured by us-

ing the nonlinear PSE option. Coupled with the receptivity

model which will be incorporated in the near future, LAS-

TRAC offers a transition prediction tool that may be used to

compute transition onset without any modeling or N-factor
assumptions.

It is also demonstrated that LASTRAC may be used for

parametric studies of several supersonic laminar flow con-

trol concepts. We presented two such techniques, thermal

and distributed roughness control. The test cases shown in

this paper cover a broad range of flow configurations. In ad-
dition to the traditional N-factor method, LASTRAC offers

a comprehensive set of options based on the state-of-the-art

numerical methods that may be used for the stability calcu-

lations and transition predictions in an integrated fashion.
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